Algebraic Equations

Q1. [Warm-up.] Find all the solutions to the following equations.
(a) $x^{2}-9=0$.
(b) $x^{2}-x-2=0$.
(c) $x^{2}+a x+a^{2}$, where a is a constant. (Express your solution in terms of a.)
(d) $x^{3}-a^{3}=0$, where a is a constant. [Hint: What do you get if you multiply out $\left.(x-a)\left(x^{2}+a x+a^{2}\right) ?\right]$

Solution:

(a) We can take square roots of $x^{2}=9$ but let's be lazy and apply the quadratic formula! We get

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-0+\sqrt{0^{2}+(4)(9)}}{2}=\frac{ \pm 6}{2}= \pm 3 .
$$

(b) We could try to guess the factors, but let's apply the quadratic formula again:

$$
x=\frac{1 \pm \sqrt{(-1)^{2}-4(-2)}}{2}=\frac{1 \pm 3}{2} .
$$

So the roots are $x=2$ and $x=-1$.
(c) Probably best to just apply the quadratic formula here! We get

$$
x=\frac{-a \pm \sqrt{a^{2}-4 a^{2}}}{2}=\frac{-a \pm \sqrt{-3 a^{2}}}{2} .
$$

The $\sqrt{-3 a^{2}}$ is a bit troubling, but let's ignore that for now...
(d) If we multiply out $(x-a)\left(x^{2}+a x+a^{2}\right)$ we get

$$
x^{3}+a x^{2}+a^{2} x-a x^{2}-a^{2} x-a^{3}=x^{3}-a^{3} .
$$

So the roots of

$$
x^{3}-a^{3}=0
$$

are the same as the roots of

$$
(x-a)\left(x^{2}+a x+a^{2}\right)=0 .
$$

This is an easier problem to solve! One root is $x=a$, and the others are the roots of the quadratic equation

$$
x^{2}+a x+a^{2}=0
$$

that we solved in part (a). So the roots of $x^{3}-a^{3}=0$ are

$$
a, \quad \frac{-a+\sqrt{-3 a^{2}}}{2}, \quad \text { and } \quad \frac{-a-\sqrt{-3 a^{2}}}{2} .
$$

Note: If we re-write the equation as $x^{3}=a^{3}$ and take cube roots, we immediately get the root $x=a$. But here we discovered two additional roots. In general, a cubic equation will have three roots.

Q2. [A derivation of the quadratic formula.] Consider the quadratic equation

$$
a x^{2}+b x+c=0, \quad a \neq 0 .
$$

(a) Show that if we substitute $x=X+d$ into the equation then expand and simplify, we can turn it into

$$
a X^{2}+(2 a d+b) X+\left(a d^{2}+b d+c\right)=0
$$

(b) By making an appropriate choice of d (which will depend on some of a, b, c), show that the equation in part (a) can be written in the form

$$
a X^{2}+p=0 .
$$

Your p should be written in terms of a, b and c. [Hint: There is no X term in this equation. So try to get rid of the X term in (a)!]
(c) Solve your equation in part (b) for X, and therefore solve the original quadratic equation for x.

Solution:

(a) The left-side becomes

$$
\begin{aligned}
a(X+d)^{2}+b(X+d)+c & =a\left(X^{2}+2 d X+d^{2}\right)+b X+b d+c \\
& =a X^{2}+(2 a d+b) X+\left(a d^{2}+b d+c\right) .
\end{aligned}
$$

(b) We want the coefficient of X to be zero:

$$
2 a d+b=0 .
$$

We can do this by choosing $d=-b /(2 a)$. This leaves us with

$$
a X^{2}+(0) X+\left[a\left(-\frac{b}{2 a}\right)^{2}+b\left(-\frac{b}{2 a}\right)+c\right]=0
$$

which we can simplify to

$$
a X^{2}+\frac{-b^{2}+4 a c}{4 a}=0 .
$$

(c) The above equation can be re-written as

$$
X^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

so its solutions are given by

$$
X= \pm \sqrt{b^{2}-4 a c} 2 a
$$

Hence

$$
x=X+d=X+\frac{-b}{2 a}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

(As expected!!)

Q3. [Vieta's relations.]
(a) Let r_{1} and r_{2} be the roots of the quadratic equation $a x^{2}+b x+c=0$. Prove the following expressions for the sum and product of the roots:

$$
r_{1}+r_{2}=-\frac{b}{a} \quad \text { and } \quad r_{1} r_{2}=\frac{c}{a}
$$

[Challenge: Can you give two different proofs? Can you give more than two?]
(b) Vieta's relations tell you that you can "reconstruct" a quadratic equation if you know its roots. For example, can you find a quadratic equation whose roots are 1 and -3 ? [Hint: To make your life easier, choose a quadratic equation where $a=1$, i.e., an equation of the form $x^{2}+b x+c=0$.]
(c) Let r_{1}, r_{2} and r_{3} be the roots of the cubic equation $a x^{3}+b x^{2}+c x+d=0$. Discover and prove a relationship between the roots r_{1}, r_{2} and r_{3} and the coefficients a, b, c and d of the cubic, similar to what we have in part (a). [Hint: Expand $a\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)$.]

Solution:

(a) Proof 1: If the roots are r_{1} and r_{2}, then we can factor the polynomial as

$$
a x^{2}+b x+c=a\left(x-r_{1}\right)\left(x-r_{2}\right) .
$$

Expanding the right-side, we arrive at

$$
a x^{2}+b x+c=a\left(x^{2}-\left(r_{1}+r_{2}\right) x+r_{1} r_{2}\right)=a x^{2}-a\left(r_{1}+r_{2}\right) x+a r_{1} r_{2} .
$$

Now compare the constant terms and coefficients of x on both sides of the equation above to get

$$
b=-a\left(r_{1}+r_{2}\right) \quad \text { and } \quad c=a r_{1} r_{2} .
$$

The desired expressions follow by diving through by a.
Proof 2: Using the quadratic formula, we can let

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

So

$$
r_{1}+r_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}+\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 b}{2 a}=-\frac{b}{a} .
$$

Similarly,

$$
r_{1} r_{2}=\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right)\left(\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right)=\frac{(-b)^{2}-\left(b^{2}-4 a c\right)}{4 a^{2}}=\frac{c}{a} .
$$

(b) Let's try to find an equation of the form $x^{2}+b x+c=0$ whose roots are $r_{1}=1$ and $r_{2}=-3$. From Vieta's relations, we see that coefficient of x will be the (-1) times sum of the roots: $b=-(1+(-3))=2$.
The constant term will be the product of the roots: $c=(1)(-3)=-3$.
So our desired quadratic equation is

$$
x^{2}+2 x-3=0
$$

[Note: You should confirm, e.g. by using the quadratic formula, that the roots of this equation are indeed 1 and -3 !]
(c) We can repeat the same kind of thing that we did in Proof 1 in part (a):

$$
\begin{aligned}
a x^{3}+b x^{2}+c x+d & =a\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right) \\
& =\cdots \\
& =a x^{3}-a\left(r_{1}+r_{2}+r_{3}\right) x^{2}+a\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right) x-a r_{1} r_{2} r_{3} .
\end{aligned}
$$

If we compare the coefficients of x^{2}, we get

$$
r_{1}+r_{2}+r_{3}=-\frac{b}{a}
$$

and if we compare the constant terms, we get

$$
r_{1} r_{2} r_{3}=-\frac{c}{a}
$$

(We also get another interesting relation from the coefficients of x.)

Q4. [Solving the depressed cubic.] Consider the cubic equation

$$
\begin{equation*}
x^{3}+p x+q=0 . \tag{*}
\end{equation*}
$$

(In particular, there is no x^{2} term: it's been "depressed.")
(a) Let r be a root of $(*)$. For the moment, express r in the form $r=\alpha+\beta$, where α and β are unknown variables. Show that

$$
\alpha^{3}+\beta^{3}+(\alpha+\beta)(3 \alpha \beta+p)+q=0 .
$$

(b) Show further that, if $\alpha \beta=-p / 3$, then

$$
\alpha^{3} \beta^{3}=-\frac{p^{3}}{27} \quad \text { and } \quad \alpha^{3}+\beta^{3}=-q .
$$

Using this and Vieta's relations from the previous problem, find a quadratic equation whose roots are α^{3} and β^{3}.
(c) By solving your quadratic equation in part (b), find expressions for α and β, and hence for the root r. [Note: This gives you Cardano's formula.]

Solution:

(a) If we plug $r=\alpha+\beta$ into $(*)$ then expand and simplify, we arrive at the given equation.
(b) If $\alpha \beta=-p / 3$, then by raising both sides to the power of 3 , we get

$$
\alpha^{3} \beta^{3}=-\frac{p^{3}}{27}
$$

Next, we cna re-arrange $\alpha \beta=-p / 3$ into $3 \alpha \beta+p=0$. If we plug this into the equation in (a), we get

$$
\alpha^{3}+\beta^{3}+q=0
$$

hence

$$
\alpha^{3}+\beta^{3}=-q .
$$

So now, if we pretend that α^{3} and β^{3} are solutions to a quadratic equation of the form

$$
y^{2}+B y+C=0
$$

then from Vieta's relations we get that

$$
B=-\left(\alpha^{3}+\beta^{3}\right)=q \quad \text { and } \quad C=\alpha^{3} \beta^{3}=-\frac{p^{3}}{27} .
$$

That is, our quadratic equation will look like

$$
y^{2}+q y-\frac{p^{3}}{27}=0 .
$$

(c) If we apply the quadratic formula to the quadratic equation in (b), we get

$$
y=\frac{-q \pm \sqrt{q^{2}+\frac{4}{27} p^{3}}}{2}
$$

But we know that the roots of the quadratic equation in (b) are α^{3} and β^{3} ! So we have

$$
\alpha^{3}=\frac{-q+\sqrt{q^{2}+\frac{4}{27} p^{3}}}{2}
$$

and

$$
\beta^{3}=\frac{-q-\sqrt{q^{2}+\frac{4}{27} p^{3}}}{2} .
$$

(We assigned the \pm signs at random.)
Taking cube roots, we get

$$
\alpha=\sqrt[3]{\frac{-q+\sqrt{q^{2}+\frac{4}{27} p^{3}}}{2}}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

and

$$
\beta=\sqrt[3]{\frac{-q-\sqrt{q^{2}+\frac{4}{27} p^{3}}}{2}}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

(There is a subtlety here involving take roots of numbers!)
Thus,

$$
r=\alpha+\beta=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

(But a cubic equation has three roots, right? How do we get the other two? This is related to the subtlety mentioned above.)

Q5. Consider the depressed cubic

$$
x^{3}+x-2=0 .
$$

(a) Show that $x=1$ is a root of the equation.
(b) Apply Cardano's formula from Q4 to this equation. Do you get the root 1? You might want to plug your formula into a calculator, such as Wolframalpha.
[Note: To enter square roots and cube roots into Wolframalpha, use sqrt () and cbrt(). So, for example, enter sqrt(2) for $\sqrt{2}$ and $\operatorname{cbrt}(10)$ for $\sqrt[3]{10}$.]

Solution:

(a) Simply plug in $x=1$ and notice that

$$
x^{3}+x-2=1+1-2=0 .
$$

(b) Cardano's formula says that

$$
\begin{aligned}
r & =\sqrt[3]{\frac{2}{2}+\sqrt{\frac{(-2)^{2}}{4}+\frac{1^{3}}{27}}}+\sqrt[3]{\frac{2}{2}+\sqrt{\frac{(-2)^{2}}{4}+\frac{1^{3}}{27}}} \\
& =\sqrt[3]{1+\sqrt{\frac{28}{27}}}+\sqrt[3]{1-\sqrt{\frac{28}{27}}}
\end{aligned}
$$

is a root of this equation. Hmm...
If we plug this expression into Wolframalpha, say, we see that it's equal to 1 ! Curious. Can you prove this algebraically?

Note: I'm being deliberately sneaky and misleading here. As mentioned in the solution to the previous problem, there's something subtle going on with the cube roots. Kind of like how we need \pm next to the square roots in the quadratic formula, we need some kind of adjustment in the cubic formula to account for all the possible roots.

Q6. [Solving the general cubic.] Consider the cubic equation

$$
a x^{3}+b x^{2}+c x+d=0, \quad a \neq 0
$$

By dividing through by a, we can (and will) assume that $a=1$, so our equation takes the simpler form

$$
x^{3}+b x^{2}+c x+d=0 . \quad(* *)
$$

(a) Show that if we substitute $x=X+e$ into equation ($* *$) and simplify we can re-write the equation as

$$
X^{3}+(3 e+b) X^{2}+\left(3 e^{2}+2 b e+c\right) X+\left(e^{3}+b e^{2}+c e+d\right)=0 .
$$

(b) Pick a choice of e that turns your equation in part (a) into a depressed cubic.
(c) Use Cardano's formula, from Q4, to solve ($* *$).

Solution:

(a) Let's look at the left-side. We have:

$$
\begin{aligned}
x^{3}+b x^{2}+c x+d & =(X+e)^{3}+b(X+e)^{2}+c(X+e)+d \\
& =\left(X^{3}+3 X^{2} e+3 X e^{2}+e^{3}\right)+b\left(X^{2}+2 X e+e^{2}\right)+c(X+e)+d \\
& =X^{3}+(3 e+b) X^{2}+\left(3 e^{2}+2 b e+c\right) X+\left(e^{3}+b e^{2}+c e+d\right) .
\end{aligned}
$$

This is exactly what we wanted to get.
(b) We want the coefficient of X^{2} to be zero, that is, we want

$$
3 e+b=0 .
$$

We can accomplish this by choosing $e=-b / 3$. The resulting depressed cubic is then

$$
X^{3}+\left(c-\frac{b^{2}}{3}\right) X+\left(\frac{4 b^{3}}{27}+\frac{b c}{3}+d\right)=0
$$

(c) This is a matter of plugging

$$
p=c-\frac{b^{2}}{3} \quad \text { and } \quad q=\frac{4 b^{3}}{27}+\frac{b c}{3}+d
$$

into Cardano's formula to solve for X. We can then get x as $x=X-b / 3$. The result is not pretty (and therefore I'll omit it), but it is what it is!

